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Estimation of ice sheet initial state

GOAL
Find ice sheet initial state that
» matches observations (surface velocity)
e is in “equilibrium” with climate forcings (SMB)
by inverting for unknown/uncertain parameters.

Significantly reduce non physical transients without spin-up.
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Estimation of ice sheet initial state

Problem details

Problem: what is the initial thermo-mechanical state of the ice sheet?

Available data/measurements

+ ice extension and surface topography
+ surface velocity ice-sheet

+ Surface Mass Balance (SMB) N

+ ice thickness H (very noisy)

Fields to be estimated
+ ice thickness H
+ basal friction B

Additional information

+ ice fulfills nonlinear Stokes equation
+ 1ice is almost at mechanical equilibrium
Assumption (for now)

+ given temperature field

Perego, Price, Stadler, Journal of Geophysical Research, 2014



Forward model: First order (FO) Stokes approximation
Model equations

i Uy > (uy +vg) 3 (us +ws) incompressibility:
— | 1 1 W, = —(uy + vy)
D=1 5uy+w) Yy 3 (0= +27) quasi-hydrostatic approximation:
i % (u +wz) % (V2 "‘%) Wy i p=pg(s—z) = 2u(uz + vy)

FO is a nonlinear system of elliptic equations in the horizontal velocities:
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where s is the ice surface and,
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Estimation of ice sheet initial state

Steady state equations and basal sliding conditions

How to prescribe ice sheet mechanical equilibrium:

flux divergence

oH i 1 . OH "
E:—dlv(UH)—l—?, U:ﬁ/udz. le(UH)—TS—F{W} =0

Surface Mass Balance

Boundary condition at ice-bedrock interface :

(an—l—ﬁu)H:O on Fg
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Estimation of ice sheet initial state

PDE-constrained optimization problem: cost functional

Problem: find initial conditions such that the ice is almost at thermo-mechanical
equilibrium, given the geometry and the SMB, and matches available observations.

Optimization problem:

find # and H that minimizes the functional J

uobs‘Z ds

1
@.11) = | lu-

1
+/ —|div(UH) — 75|* ds
R

T

1
+/ —Q‘H—HObS‘QdS
> 0g

+R(B, H)

subject to ice sheet model equations
(FO or Stokes)

surface velocity )
mismatch Common
SMB
mismatch > Proposed
thickness

mismatch

regularization terms.

U: computed depth averaged velocity
H: ice thickness
6 basal sliding friction coefficient

. SMB
R( B) regulamzaﬁoW
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Estimation of ice sheet initial state

PDE-constrained optimization problem: gradient computation

Find (8, H) that minimize 7 (8, H,u)
subject to  F(u,58,H) =0 < flow model

How to compute total derivatives of the functional w.r.t. the parameters?

Solve State System F(u,5,H) =0

Solve Adjoint System (FEN), 0w) = Ju(0), Vi

Total derivatives 9(55, op) = *7(B,H) (55, Op) — <>\,JT(B,H) (557 Orr))

Derivative w.r.t. B G1(0g) = 045/ VB -Vog ds — / dgu-Ads
by >
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Estimation of ice sheet initial state

Algorithm and Software tools used

ALGORITHM SOFTWARE TOOLS
Basal nonuniform triangular mesh Triangle
Linear Finite Elements on tetrahedra LifeV
Quasi-Newton optimization (L-BFGS) Rol
Nonlinear solver (Newton method) NOX
Krylov linear solvers AztecOO/IfPack

Details:
Regularization terms: Tikhonov

L-BFGS initialized with Hessian of the regularization terms

(%5%5 — L)




Estimation of the initial state of Greenland ice sheet

Grid and RMS of velocity and errors associated with velocity and thickness observations

Velocity RMS (m/yr) Thickness RMS (km)
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Geometry and fields Bamber et al.[2013], temperature computed with CISM (Shannon et al. [20 el



Estimation of the initial state of Greenland ice sheet

Inversion results: surface velocities

computed surface velocity observed surface velocity

lul (m/yr)
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Estimation of the initial state of Greenland ice sheet

Inversion results: surface mass balance (SMB)

SMB from climate model
(Ettema et al. 2009, RACMO2/GR)
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Estimation of the initial state of Greenland ice sheet
Estimated beta and change in topography

recovered basal friction ~ difference between recovered and
‘ observed thickness
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Implementation of adjoints capability in newer code Albany-FELIX
(w/ E. Phipps, A. Salinger, D. Ridzal and D. Kouri [SNL])

Albany-Felix: Albany ice sheet solver

Why?
- to exploit Automatic Differentiation for computing derivatives

- to exploit Albany/Trilinos ecosystem (e.g. for UQ capabilities using Dakota)

- to use in-house software (better maintainability)

Features:
- automatic differentiations to compute adjoints and objective functional derivatives

- coupled with ROL (Rapid Optimization Library) package in Trilinos, to perform
reduced gradient based optimization

- coupling with Dakota for UQ capabilities

TODO:
- Implement Hessian to use quasi-Newton methods
- Add shape optimization to be able to invert for bedrock topography

- Improve robustness of inversion and explore different optimization strategies

(see A. Salinger's talk on Tuesday, 2:40pm, room 258, MS225) ' |



Antarctica Inversion using Albany-Piro-ROL

Objective functional: J(u(8), B) :/ %|u—u0b3\2ds—|— oz/ IVB|? ds
2 Yu >

ROL algorithm:
e Limited—Memory BFGS
e Backtrack line—search

beta

— N
o0
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Gometry (Cornford, Martin et al., in
prep.)
Bedmap2 (Fretwell et al., 2013)

Temperature (Pattyn, 2010)
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Antarctica Inversion using Albany-Piro-ROL
comparison surface velocities, computed vs. target
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On-going work

B Bayesian calibration / Uncertainty propagation
(w/ M. Eldred, C. Jackson (U. Texas), J. Jakeman, I. K. Tezaur,
G. Stadler (Courant) , A. Salinger)

B Use Hessian of deterministic inversion to estimate Covariance of
basal friction distribution (N. Petra, G. Stadler, O. Ghattas)
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